
ON THE STABILITY OF MOTION IN CASE 

OF TWO SMALL POSITIVE ROOTS 

(OB USTOICHIVOSTI DVIZHENIIA V SLUCHAE 
DVUKH MALYKII POLOZHITEL’NYKH KORNEI) 

PMM Vol. 31, No. 1, 1967, pp. 140-144 
G. A. K’UZ’MIN 

(Moscow) 

(Received April 13, 1966) 

We consider the stability of a dynamic system, the motion of which is described by a 

system of differential equations of the type 

3: = p5 + x (z, Y), Y’ = Pa?/ + y (x7 ?I) (0.1) 

Here CL is a small positive number, U 2 0 and x(X, y) and Y(x , p) are holomor- 

phic functions in the vicinity of the unperturbed motion X= J4 = 0 , the expansion of 

which contains no terms of higher than second order and which can be represented as a 
sum 

x (z, ?/) = x(m) (z, y) + x(m+l) (2, ?/) .-(- . ( Y (X, y) = Y(m) (2, ?/) + Y(m+l) (z, y) +. -. 

The characteristic equation of the system (0.1) has two small positive distinct roots, 
N1=/-landK,=~a, 

1. Following [l], we shall call the cases when the characteristic equation has the 
right-hand roots of low absolute value, the cases near to criticaL Presence of positive, al- 
though small roots, is a necessary and sufficient condition for the instability of perturbed 
motion in the Liapunov sence p, independent of nonlinear terms . These conclusions 
were reached, when the restraints imposed on the magnitudes of initial deviations were 

very strong , 
If the system admits the deviations exceeding in magnitude those allowed in the above 

mentioned theorem, then the problem of stability becomes open. 
In the problems of this type we shall, when investigating the stability, make use of the 

definition of stability formulated by Kamenkov [l]. 

“If, in the space XI,. . , , xn a closed region G can be found possessing the property 

that the perturbations Xl,. . . , xn assumed to be functions of time and satisfying the 
equations of perturbed motion do not emerge outside this region for any 6 2 J& if only 
their initial values ~10,. . . , XIQ were contained within this region or OR its boundary, 

then the unperturbed motion will be stable : otherwise it will be unstable . 
It may happen, and this is a general case, that inside the region G there exists another 

closed region G1 and relative to it, the motion may be unstable. The cases uihen several 

such regions may be present and enclosed within each other, are not excluded”. 
Ler us consider Equations (0.1) in polar coordinates X = r cos 8 and y = 7 sin 8 
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Here 
Rh. (0) = _X’frn+k) (cos 8, sin 0) cm 8 f- Ycrn+k) (cos 0, sin 0) sin 0 

Fk (e) = Y\M+k) (cos 0, sin 0) cos 8 - Xtrn*lii (cos 8, sin 0) sill 8 

are complete rational functions of cos 8 and sin 8 . 
Setting $J = 0 results in the problem of two zero roots with two groups of solutions, 

which has a thorough treatment in the papers by Kamenkov p and 45 In case of stable 
motions, the problem can be investigated by two distinct methods depending on whether 

the function Fo( 8 ) is sign definite, or whether it can became zero on the interval 

[O, 2l73. The latter method is, in our case, preferable . 
Let us take the Liapunov function in the form 

B 

V= rexp Y (O)d@ 
s 

(f Y (0)dB = 0) 

0 0 

where Y (8 ) is a continuous periodic function to be defined . 
The derivative of V is, In accordance with (1.1). 

8 

V’ = exp ’ Zp (0) d8 {pr fCos28 + a sin% + Ip (8) fa - 1) sin 8 03s 81 .i_ 
s 

+ ?” 1;~ VU + ‘I’ P) Fo P)l + pm-+’ [RI (0) + $ (0) J’l WI + . . .I (1.3) 

2, Let us consider two cases, in which the problem of stability is solved with the heIp 
of 772th order forms 

R,@) <o for F, (e) = 0, O<,(<22n 12.1) 

gFo(Q<O, g== 
sx h(e) 
s poodO+O 

for Fo(6)#0, 0<0<22n (3.2) 

In both cases the motion is’asymptotically stable by 133, and this paper also shows the 
possibility of choosing Y ( 8 ) while satisfying (2.1) and gives the method for its construc- 

tion. It also proves that a function Y’( 8 ) satisfying 

~~(e~+y~0~~~~6)~-~ 12.3) 

where M > 0 is a constant, can always be found. We should note that in the majority 
of practical problems 77J is found to be fairly small (between 3 and 5). This allows us 

to select the function Y ( 8 ) using simple graphical constructions. One should however 
make the attempt to obtain K as large as possible, otherwise large errors may arise during 
the determination of the boundary of the region G, 

If the functions ri,( 6 ) and Fo(8 ) satisfy the conditions (2. l), then in addition to the 
method given above we can use another, strictly analytical method to obtain Y(8) 

Condition (2.3) then becomes g&J 6) 5 -M. Choosing ?!( 8 ) in one way, or the other, 
we fully define the function 

cos 28 + a sin 28 + Y (e) (a - I) cos 0 sin 8 

Let us choose its largest value 

6 = sup Icos2 0 + a sin* 8 + I (e)(a -1) co9 0 sin 01 (0 < 0 q Zn) 
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We shall use M and 6 in majorizing the corresponding terms in (1.3) 

v’ < exp 
5 

9 (0) dO [ur6 - rqM + rmil (. . .) + . . .] 
0 

from which we can obtain the boundary of G=, interior to G 

It can be asserted that when r > To , then v’ < 0 is independent of terms of the 
order higher than m , provided that r and r. are sufficiently small. Consequently, on 
one hand there exists a closed cycle I/ = c intersected by the integral curves of (0.1) 

directed inwards, on the other hand the point x = y = 0 is an unstable node when r_1# 0. 
By the Bendickson theorem, there exists between the coordinate origin and the closed 

cycle V= c, a critical cycle which has a corresponding periodic motion. Relation (2.4) 
gives a value which is on the high side and is caused by the majorization, shows that the 
region G, appears only when small positive roots are present and shows that the size of 

this region is directly related to the magnitude of p. At the same time, the magnitude 
of 7, can be varied by varying M, i. e. by varying the coefficients of nonlinear terms in 

the initial system (0,1X 
In this manner, the motion unstable in the Liapunov sense, is found to be stable, in some 

region, in the sense of the definition quoted above, provided the motion given by the 
critical system (p = 0) is asymptotically stable in the Liapunov sense. If, on the other 

hand, the motion described by the critical system is unstable or not asymptotically stable, 
then the appearance of small positive roots will certainly make it unstable. 

Two particular cases must be singled out. In the first case we have CZ = 1 . The ini- 

tial system will have a small double positive root with two groups of solutions. Magni- 
tude r, will be of the form (2.4) with 6 = 1 . Second case corresponds to U = 0 , which 

is arrived at whenever the system of differential equations under investigation has a 

characteristic equation with two complex, conjugate roots with small positive real parts, 
and another root equal to zero. 

3. Above, we have investigated the cases when the characteristic equation of (0.1) 

contained only small positive real roots. 
Next, we shall consider a system of equations of a more general type 

x’ = CL (arz + QY) + x (I, Y), Y’ C- 11 (&J: + &Y) i- Y (r, Y) (3.1’) 

With the conditions al + bz > 0 and al& - U2bl > 0 , we shall single out two 

cases. 

11 h - b*)’ + 4a,b, > 0 when the characteristic equation has small real posi- 

tive roots . This case can be reduced to one of the cases considered previously. 
2) (aI - b,)3 + 4a,bl < 0 when the characteristic equation has a pair of conjugate 

complex roots of small modulus and possessing positive real parts. 
For the method used to solve the present problem, it is immaterial which of the above 

cases takes place. Hence, applying the above to (3.1) we can conclude, that, in contrast 
with the previous calculations, only 6 will change, and it must, after the selection of 

Y (8 ) , be obtained from 
6 = sup {a, cos:o + b3 sin? 0 + (a, f b,) siu 0 COJ 0 .f- ‘4’ (0) [b, COS’ 0 - 

- a2 sin? 8 $- (b, - ul) cos f3 sin 011 (0 < 0 .< 22x) (3.2) 
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The rest of the arguments remain fully in force . 

We should note that if the characteristic equation of the investigated system, apart 
from small positive roots, also has negative roots and roots with negative real parts, we 
can employ Kamenkov’s [3] idea of separating the critical and noncritical variables, 

which in turn allows us to investigate either (0.1) or (3.1) . 

4, As an example, we shall consider the problem of stabilization of an object inher- 

ently unstable in two coordinates. Stabilization will be effected by a nonlinear control 

with odd characteristic and possessing a zone of insensitivity . We shall use the follow- 

ing differential equations of perturbed motion of the system 

where nl 

Xl * = px1 - p22 + n,z + x, (Xl, 4 

*2 . = p2 + Pq + n2z + X2 (51, 4 (0 < P <( 1) (4.1) 

z’ = f (0) = s,o3 + S,d + . . . , u = lc~X~,-t &x2 + q-J2 

and n a are the parameters of the object giving the measure of the influence -. _ 
ofthecontrolonit; 33, 35.... are the parameters of the nonlinear characteristic 

of the control ; Q is the controlling impulse signal and x1(x1 , x2), & (xl , X2) are 
holomorphic functions near the coordinate origin, the expansions of which start with 

second order terms . 
Assuming that the parameters of the object are specified, we shall choose the para- 

meters of the control so as to obtain the solution of the stability problem in terms of 
order not higher than the third . 

Changing to new variables 

21 = Xl + qz + a,z2 + a#, 22 = x2 + blZ + b,z2 + b3z3, z= z (4.2) 

we obtain (4.1) in the form 

ZI - = PZ, - pz2 + .@(q, z 27 4 + zy (Zl, z2, z) + . . . 

z2 * = pz, + @zl + $2) 2 (z1, z21 z) + Z(23)(z1, z2, 2) + . . . (4.3) 
z’ = 2 (3) ( Zl, z29 z) + .Zf4) (Zl, z2, z) + . . . 

Here Zy), Zy), Zf) and Zr) do not contain terms independent of 21 and 22 . In 

cylindrical coordinates z1 = r1 cos 8, z2 = r1 sin 8 and Z = Z , (4.3) becomes 

r1 ’ = pr, + r1 [Q’20’(8)r, + Q(“) (0) z] + 

-I- rl 1Q(*‘) (0) rIz -I- Qc21) (0) rl z + Q(12) (Ob*l + R (rlr Z, 0) 

r,8’ = prl + r1 [F fzo) (0) rl + F w) (e) Z] + 
+ rl p30)(e) r12 + Pc21) (e) rlz + F(12) (0) z?] + 0 (rl, z e) 

Z’ = r1 IPcso) (e) ~2 + Nzl) (e) rlz + P2) (e) 221 + &03)z9 + z (iI, z, 0) 

where Q tkl Q(e), F ck, “l(e) and P (Ice “‘(8) are determinate periodic functions of 8. 

Using the well known interchange with periodic coefficients [S] we can transform these 
equations into another form, in which the terms of up to and including the third order 

will have constant coefficients, i. e, 

p’= j.Lp [ 1 - CG(klk2’ (f3) pk@ + . _ .] + g(ll)p< + g(3”)p3 + &12)PE2 i- p (P, E, e) 

$’ = pp [- (k2 + 1) ~H(k~kz) (f3) p”!s’(z + . . ,] -+ f+03)y + +21)cp2 + E (p, 5, 0) 
(4.4) 

k,-tkz=i? 
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Here C(“rk2’(0) and H (klkz) (0) are known periodic functions of 8 , while P(fJ,{ ,8 ) 

and s( p. 5, 8 ) are holomorphic functions near p = 5 = 0 with the coefficients perio- 
dic in 0. and whose expansion does not contain terms of the order lower than the fourth 

in p and 5. 
We shall use (4* 4) which is formally analogous to (0. 1) when CZ = 0 II as a starting 

point . The problem is separated into two, basically different cases, depending on 

whether the coefficient g(l*t) is. or is not equal to zero . Let us consider the case of 
pl) = (-J . This is equivalent to the condition 

64p + BP) n, + (Bp + AP) ns = 0 (4.5) 

where A and B are known quantities determined from the parameters of the object , If 
the parameters rZ 1 and ?J 2 can be chosen so as to satisfy (4,5), then the problem on 

stability will be fully solvable in third order terms . 
Passing to new variables p = 7” sin Cp and 5 = r cos Cp in (4.4) and selecting I/in the 

form of (1,2), we can express (1.3) as 

9 
It’ = cxp 

s 
II, (cp) d9 ([pr (sin2T + 9 (cp) siri cp cos (p) + ur2 (. . .)] f 

0 

where 

F, of) = Rd3*) - g@l)) sin2 9 + (g(t2) - q(03!) co9 cp] sin cp Cos M 

R 0 ((p) = g@O’ sir@ + (g(t’) + q(*l)) sin2rp cos2cp -t_ qcQ3~ COs %p 

Function 15”c (C#J ) is not sign definite and may become zero either on two, or on four 

rays, depending on the relationships existing between the coefficients . 

1”. Function F,(g) = 0 on the rays ?& = krl and C&J2 = ill + kTT(k = 0, 1, 2,...), 
This is possible, if the relationship 

g(12) _ 403) 

o < &YO) _qm) = -iv (4.7) 

exists between the coefficients . 

Condition (2.1) requires the fulfillment of yet another two inequalities 

P) < 0, fp) < 0 (498) 

In this case the choice of parameters of the control must be based on the simultaneous 

fulfilment of conditions (4,5), (4.7) and (4.8) , 
2’. Function .& (cp) = 0 on the rays cp~ , cp 2 and cp3,4 = tan -If (N)i. Here we 

must have fl > 0 e Condition (1.2) demands that (4. 8) and 

Ii* (iv) = g%= j_‘(&J’s) + qf*u) N + Q@s) < 0 (4.9) 
be fulfilled, 

In this case parameters of the regulator must be chosen from the conditions (4.5), 

(4.8),(4,9) and Ar > 0 . Choice of the Y (9 ) is governed by the properties of Ao (so) . 
If, apart from the conditions already fulfilled, the relation 

(ga2) + p)z < 4gQO+w (4.10) 

can also be satisfied, then flo (cp) will be found to be negative definite. In this case 

we can put !!(Cp ) z 0 and use 

M = sup R 0 (cp), o<<q3<2n, s-1 
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in the derermination of 7,. 
Such a choice of y(Cp 9. can, however, be recommended only when I?o(Cp) exhibits a 

narrow range of variation while remaining negative everywhere. Otherwise, an appreci- 

able error may arise in the determination of 7,. 
When 3, (Cp) undergoes a wide range of variation and when the condition (4,lO) can 

not be satisfied. the most suitable form of Y (9) is 

where U and b are real numbers, one of which may be zero, and which are given by a 
well defined form of Fo(Cp) and Ri, (Cp) I Such a choice of Y(ep ) will always enable 

us to select M from the following relationships: (1) M = sup [gc”), qto3)] - in the case 

of two rays and@) M = sup [g(“‘), q(@‘J, R@ (N)] - in the case of four rays. 

Number 6 can be found from 

b = sup fsin2 Ip + a sir@ cosQp i- b co9 9 sin4rpl (0 < rp \< 2~) 

The selected numbers enable us to find $ and this completes the solution of our prob- 
lem in case of g(‘*l) = 0. 

When the condition (4.5) cannot be satisfied by a suitable choice of parameters 721 
and 7?, 2” the problem becomes much more complex and the terms of the order higher 
than the third must be brought into use in order to obtain its solution , 
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